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B U C K L I N G  O F  A N  E C C E N T R I C A L L Y  C O M P R E S S E D  B A R  

N. S. Astapov and V. M. Kornev UDC 539.3 
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and the boundary conditions 

The problem of determining the shape of the elastic line of a longitudinally compressed bar has an 
exact solution in elliptic functions [1-3] and hence, besides being valuable by itself, is exceedingly useful as a 
test problem in constructing effective approximate solutions. In the present work the postbuckling behavior of 
an ideally loaded bar is studied by the perturbation method. The approximate formulas obtained are used to 
analyze buckling by the method  of successive additional loading of an eccentrically compressed bar (a nonideal 
system), and in so doing, in every step of additional loading use is made of the information on the distortion 
of the critical load spec t rum of a buckled ideal system. A comparison of the results shows the applicability 
limitations of the approximate formulas: calculations using these formulas do not require any tables of elliptic 
integrals and are readily made on calculators. 

1. A n  I d e a l l y  L o a d e d  Bar .  Ana ly s i s  of  B u c k l i n g  by t h e  P e r t u r b a t i o n  M e t h o d .  We consider a 
hinge-supported bar of length L (Fig. 1) loaded by an axial compressive force P,  which retains its magnitude 
and direction upon deformation of the bar. We assume that  the length L of the bar's axial line is invariable, 
and the bar axis can bend only in the plane (x, y). Let us investigate the buckling mode and the postbuckling 
behavior using the per turbat ion technique. 

Let us use the exact equation of elastic equilibrium upon plane deflection of the bar in the form [1-5] 

ee = i / S I ,  (1.1) 

where ze is the curvature at a given point of the elastically deflected longitudinal bar axis; M is the bending 
moment at this point; and E1 is the flexural rigidity. We express the bending moment  M = - P w  and the 
curvature ee = wss/(1 - w~) 1/2 at an arbitrary point s of the bar via the function w (s), which completely 
[6] determines the strained state of the bar (Fig. 1). We substitute these expressions into Eq. (1.1) and 
differentiate it twice with respect to s: 

(w~s/(l - w~)1/2)~ = - P w s s / E I .  

Thus, the function w (s) satisfies the differential equation 

w2,(1 + 2w~)+~ --~3wsws" ( 1 - w 2 ) ]  (1 - w2~l/2ws, s, = 0  (1.2) 

w (0) = w (L) = wss (0) = wss (L) = 0. 

We write Eq. (1.2) with accuracy up to sixth-power terms in the function w (s) and its derivatives, inclusive: 

w~sss+ ws ( l + 4 w ~ ) + a w s w s s s ( l + w  2) ws3+~---] 1 - ~ w  s - g w  ws~=0 .  (1.3) 

We introduce a new variable z = 7cs/L and a function W such that  w = a W  (c~ is a constant of the same 
order of smallness as the deflection amplitude). With this notation Eq. (1.3), takes the form 

2 7r 2 
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Dividing Eq. (1.4) by a / ( r /L )  4 and denoting by e = r 2 (a /L)  2 the small parameter characterizing the 
deviation of the system from the trivial solution W = 0, we obtain 

p ~W; 1_~,,,41 We~ = 0. 

Thus, with accuracy up to e 2 we have the following problem on eigenfunctions and eigenvalues: 

(Ao + cA1 + e2A2) W - A (Bo + eB1 + e2B2) W = 0, W (0) = W (Tr) = Wzz (0) = Wee (Tr) = 0. (1.5) 

Here A = P (L/r)2/EI;  Ao and Bo, and A1, B1, As, and B2 are the linear and nonlinear operators 

Ao = ( )~ ,~ , ,  Bo = - ( ) e e ,  

1 
A1 = ()3~e+3()z()zz()ez~, B1 = ~ ()2 ()zz, 

1 4 A2 = 4()2 ()zz, + 3()az()z,()zzz, B 2 =  "~()z()zz. 

For any A the trivial solution W -- 0 of problem (1.5) relates to the unbuckled equilibrium state of the bar. 
Problem (1.5) at ~ = 0 is called an unperturbed (linearized) problem. The eigenfunctions of the unperturbed 

problem are W (~ = 7n sin nz (% are the normalization coefficients) and the eigenvalues are A (~ = n 2. 
Following the conventional procedures of perturbation theory [7], we represent the eigenfunctions W~ and 
eigenvalues An of the per turbed problem (1.5) in the form of asymptotic series in terms of the parameter r 

w.  = w.(~ + E  kw. A. = + E (1.6) 
k=l k=l 

The normalization conditions for the unperturbed problem are given by the relationship (BOW/(~ W~~ 
(&j are the Kronecker symbols), from which the equality n272 = 2/7r for determining the coefficients % 
follows. For the per turbed problem (1.5), these conditions are specified, in addition, by the relationship 

(I4//(~ W (D) = 0. Here by the scalar product is meant the functional 
~f 

( f  (z), g (z)) = / fgdz. 
0 

We subst i tute  the asymptot ic  expansions (1.6) into the equation and boundary conditions of problem (1.5) 
and equate to zero the coefficients of terms with the same powers e. Using the normalization conditions, we 
find the expansions of An with accuracy up to ~2 and the expansions of Wn with accuracy up to first-power 
terms in ~ inclusive. Equating to zero the coefficient of e, we obtain the equation 

AoW (') + A, W (~ - A  (~ (B0 W(1) "4- B, W (0)) - i (2 )BoW.(~  0, (1.7) 
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which contains, as unknowns, the functions W (1) (z) and the parameters A (1). Substituting into (1.7) the 

expansion of the function W O) into the series 
oo 

= E  oJw) ~ 
j = l  

in terms of the eigenfunctions of the unperturbed equation and using the normalization conditions, we have 

A~) = (A,w~~ w ~ + ) -  A~~176 w~~ ann =0, 

~nj = [A(2)(81W. (~ w)~ ), w,(~ .~ g2)), j #- .  
Calculating these quantities, we find the eigenfunctions and eigenvalues of the perturbed problem (1.5) with 
accuracy up to first-power terms in r 

3 
Wa (z) = ")', sin nz  - e - ~  73, sin 3nz,  An = n 2 + g72n4/8. 

Substituting expansions (1.6) into the equation of problem (1.5), equating to zero the coefficient of e 2, etc., 
and following the procedures of the perturbation theory, we find the expressions for An and Wn (z) with 
accuracy up to terms containing ~2 inclusive. 

In the nonlinear problem (1.5), of greatest practical interest are the least eigenvalue 

A 1 = l + ~ 7 1 e + - - 7 1 4 e  2 

and the eigenfunction 

3 
W1 ( Z )  = ")'1 sin z - r ~ 73 sin 3z 

corresponding to it with accuracy up to ~. Returning to the initial notation (z = ~rs/L, w = a W ,  ~ = 
~r 2 ( a / L )  2, h = P (L /Tr )2 /EI ) ,  we obtain 

~r 2 21~r 4 

and, taking into account the equation (373) 2 = 72 = 2/~r, which follows from the normalization conditions, 
we write 

L 64 sin . (1.9) 

Formula (1,9) gives an approximate expression for the coordinate wl ( s )  of the curved bar axis. The maximal 
deflection of the bar is reached at point s = L / 2  and has the form 

fl  = max Wl (s) = 4")' 1 1 + ~-~ . (1.10) 
O~<s~<L 

From (1.8) and (1:10), with accuracy up to ( f l / L )  4 inclusive, we obtain the dependence 

which binds the external load P with the quantity f l  or, solving the latter equality with respect to f l ,  we 
obtain 

f l  = 4V'2 L , / ( r  + 1 9 ( P / P . - 1 ) / 2 -  1~)/19 (1.12) 
7~ V \  / 

[P, = E I  (~r/L)2]. At t = 19 ( P / P , -  1)/2 ~ 1 equality (1.12) can be written with accuracy up to second-order 
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TABLE i 

"r, 

deg 

10 

20 

30 

40 

60 

70 

80 

Load 

P / P ,  

1.0038 

1.0154 

1.0351 

1.0637 

1.1517 
1.2147 

1.2939 

Exact 

value 
0.0554 

0.1097 

0.t620 

0.2111 

0.2966 
0.3313 

0.3597 

Deflection f l /L  

Formula 

(1.12) (1.13) 

0.0554 0.0554 

0.1098 0.1096 

0.1625 0 .1617 

0.2134 0.2100 

0.3098 0.2875 

0.3562 0.3108 

0.4021 0.3177 

infinitesimals in t as 

fl = 2V~ L d p / p .  _ 1[1 - 19(P/P, - 1)/16], (1.13) 
lr 

which is more accurate than the equation [1, p. 74] 

I, - 2,5~ L ~ s / s ,  - 1 [1 - ( s / s ,  - 1)/8]., (1.14/ 

The results of calculations using formulas (1.12) and (1.13) are presented in Table 1. Moreover, this 
table gives, for different values of the angle r between the tangent of the bar axis at its vertex and the Ox 
axis (Fig. I), the exact values of deflections (see [1, p. 73; 2, p. 509; 3, p. 74]) calculated, with the aid of the 
tables of elliptic integrals, from the formulas 

~/2 
/ , -_ 

F =  0 ~ / 1 - k  2sin2~ P, L F 

[k = sin (v/2)]. h comparison of the approximate values of the deflections calculated from (1.12) with the exact 
values shows a coincidence, technically quite acceptable, up to loads exceeding the critical load by a factor 
of 1.15. Note that ,  in calculating the bar deflection using formula (1.14), for v = 30 ~ we have f , /L  ..~ 0.168 
instead of the exact value f l /L  = 0.162, and f~/L ~ 0.406 for T = 700 instead of f~/L = 0.3313. 

Let us show that  formula (1.11) can be obtained from (1.15) by expanding P/P, into a series in terms 
of the powers of f l / L .  To do so, we substi tute into the second relationship of (1.15) the representation 

7r F = - ~ ( l + � 8 8  kd+ . . . )  (i.16) 

of the complete elliptic first-order integral in the form of a series [7] converging for ]k[ < i and obtain 

~-, = 1 + P ~ --11 k4 (1.17) k 2 + 3 2  + . . . .  

Replacing k 2 in (1.17) by the expression (~r2/4)(P/P,)(fl/L) 2, which follows from the second and third 
relationships of (1.15), and taking into account the absolute convergence of series (1.16), we have the expression 

E-,=l+~y - +~ +... 
71.2[ 17r2(fl,~2 ] /'fl,~2 11~,Tr2/fl-~2,~2 71-2 (~)2 197r4(fl,~4 

= 1 + ~ - 1 + ~ y ~ - /  + . . .  k ~ ) + ~ I Y ~ Z /  J + . . . .  l + y -  +s-5-~E-/  + '  (1.18) 
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which coincides with (1.11) with accuracy up to terms containing (filL) 4. From the second and 
third relationships of (1.15) and the obvious inequality fl  < L/2 follows the inequality k 2 = 
(~r2/4) (P/P, ) ( f l /L)  2 < (~r2/16)(P/P,)  < 1, if P/P, < 16/rr 2 ~ 1.62. This inequality is sufficient for 
the convergence of series (1.16) and (1.17). Consequently, using partial sums of series (1.1S), we can obtain 
for P/P. < 1.62 the load-deflection dependence to any desired accuracy. 

2. A n a l y s i s  of  B u c k l i n g  of  an  Eccen t r i ca l l y  C o m p r e s s e d  B a r  by t h e  M e t h o d  of  A d d i t i o n a l  
L o a d i n g .  Figure 2 shows a constraint bar of length L deflected under the action of force P which retains its 
vertical direction and is applied with eccentricity e [4]. Also shown here is a fictitious hinge-supported bar of 
length 2L1 whose ends are lying in the line of action of force P.  For the deflection function w (s) (0 ~< s ~< L) 
of the fictitious bar use can be made of the approximate expression (1.9) by substituting in it 2L1 for L. The 
slope angle OL of the top end is expressed via the deflection function [4, 5] 

2 (LI + L))m. COS0L = (1 -- w s 

The maximal deflection of the bar is denoted by f and that  of the fictitious bar, by f l .  Since fl - f = e cos 0L 
(Fig. 2), 

w(L1 + L ) = e ( 1 - w 2 ( L 1  + L)) 1/2 

and hence, substi tut ing expression (1.9) for w, we find the equation 

(a71)2 [sin[ ~r(L1 + L) ~r 2 {c~71"~ 2 . 3rr (LI + L).] 2j 
s ,n  

2L1 64 2LI 

= ;2 1 2 cos  2L1 64 cos  2L1 ' 

which makes it possible to determine a71 from the given L, L1, and e. By using the notation 

# =  \ 2 L 1  ] ' b =  c = s i n 2  \2L1] ' "~1 ' 
we obtain, with accuracy up to (~V1)4 inclusive, the equation 

[4 (1 - 3b) c 2 - ( 5 -  9b) c+ 11~2132 + [ ( b -  1)c + 1 ] , -  b = O, 

which is quadratic in # and whose discriminant is 

O = (1 - c) 2 + b(1 + l l c -  12c2)/8 + b 2 c ( 9 -  4c)/8 t> 562c/8 >10. 
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TABLE 2 

L1 Approximate solution Exact solution 

P/P, f / i  

1.2 

1.1 

1.06 

1.03 

1.02 

1.01 

1 

P/P. f/L 

0.7140 0.2615 

0.8913 0.4441 

1.0032 0.5589 

1.1044 0.6423 

1.1375 0.6630 

1.1679 0.6775 

1.1942 0.6846 

0.7141 

0.8946 

1.0209 

1.1683 

1.2330 

1.3076 

1.3932 

0.2618 

0.4472 

0.5707 

0.6750 

0.7076 

0.7372 

0.7628 

TABLE 3 

e Approximate solution Exact solution 

0.1 

0.01 

0.001 

P/P, //L 

0.89129  0 .44407 

0 .82748  0.06001 

0 .82646  0 .00603 

P/P, f/L 

0.89461 0.44722 

0.82741 0.05999 

0.82657 0.00604 

Finally, for a71 , we have 

8L1 [ l + ( b - 1 ) c - V ~  
"7 '  = - 7 -  4 (3b - 1) c2 + (5 - 9b) c - 1' 

(2.1) 

which is readily calculated for the given e, L, and L1. The choice of the sign before D 1/2 was determined by 
the physical meaning of the parameter a71 , which is approximately equal to the bar deflection amplitude. 
Thus, if before D 1/2 we put the plus sign, then at L1/L /> 4 the value of the fraction under the radical 
becomes negative, and at L~/L = 2 we obtain a71 ~ 7L. 

Now we will present the construction algorithm for a load-deflection diagram. First we assume that 
L1 = 3L and, in a certain step (0.1L or 0.01L), we begin to decrease L1 to L. In other words, we will 
successively apply additional loads to the bar and increase the load P until the slope angle of the top end of 
the bar becomes equal to ~r/2. For each loading step, i.e., for each L1, we calculate a71 from (2.1). 

Load-deflection diagrams for an ideal bar of length L1, which were constructed by the approximate 
formulas (1.10) and (1.11), are shown by the dashed lines in Fig. 3. Substituting the value of or-),, into expression 
(1.9) of the deflecti()n function for an ideal system, we can calculate approximately the horizontal shift of w (s) 
at any point s of the bar (see Fig. 2). Thus, for the upper end of the real bar, we have s -- L1 + L, hence the 
maximal deflection is f = w (L1) - w (L~ + L) (point A in Fig. 3), and the load corresponding to it (point B in 
Fig.3) can be calculated from formula (1.8) or (1.11) by substituting in them 2L~ for L. Thereby, for the given 
L and L1, we can approximately calculate the bar deflection and the load. Assuming various values of L1, we 
construct points (marked in Fig. 3 by a cross) of the load-deflection curve of an eccentrically compressed bar. 

Table 2 lists the calculation results obtained by the above algorithm for e = 0.1, L = 1. By decreasing 
L1 successively from 1.2 to 1 (via additional loading of the bar), we obtained a series of points of the load- 
deflection diagram. Also shown here are the refined values calculated by linear interpolation of the table data 
[3] in solving the system of equations (1.200), (1.205), and (1.206) [4, pp. 69, 70] with three unknowns, a 
part of which is under an incomplete elliptic first-order integral. Table 2 shows good agreement of the results 
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up to L1/L = 1.03, i.e., up to loads exceeding the critical load by 10%. However, if we assume that  PIP. 
rather than LI is known, the difference of the deflections obtained by the approximate method from the exact 
deflections becomes insignificant (see the approximate value of deflection for L1 = 1.01, and the exact one for 
L1 = 1.03, in Table 2) within the entire range of applicability of the method,  i.e., up to PIP, = 1.19. Thus, 
for P/P. = 1.1044, we have f / L  ~, 0.6423 instead of the exact f / L  = 0.6353, and for P/P, = 1.1942, we 
have f / L  .~ 0.6846 instead of 0.68891 i.e., the difference of the approximate values of the deflections obtained 
by the method described from the exact values for the same external load is about 1%. Thus, the proposed 
method makes it possible to accurately construct the load-deflection curve up to loads exceeding the critical 
load by 19% at which the bar deflection reaches ~ 0.68 of its length. The dash-and-dot curve in Fig. 3 is not 
reproduced using this method.  

From Table 3, which presents, for L1 = 1, 1L, the effect of eccentricity on the error of approximate 
results, it can be seen that  as the eccentricity decreases to e = 0.001 the error does not exceed 0.7%. The effect 
of eccentricity on the discrepancy between the curves corresponding to the exact load-deflection dependence 
at P > P.  drops [4, p. 70, Fig. 1.29]. This is as it should be, because the potential function of an ideal bar 
has the form of a cusp catastrophe [8], and hence the stability along the equilibrium curves of a bar with 
small initial imperfection (for example, upon eccentrical loading) is completely determined by the stability 
properties of the cusp catastrophe. 
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